Identification Of Technologies Of No Or Or Low Added Value

Maria Eugenia Esandi¹, Iñaki Gutiérrez-Ibarluzea², Nora Ibargoyen-Roteta² and Brian Godman³

1. Universidad Nacional del Sur
2. Osteba, Ministry for Health, Basque Government (Primary Presenter)
3. Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, UK and Division of Clinical Pharmacology, Karolinska University Hospital Huddinge, Karolinska Institutet
The toolkit on disinvestment

A jointly effort performed by HTAi IG on DEA, IG on ethics, EuroScan network and INAHTA is aiming to elaborate a toolkit that could aid organizations and individuals on the steps to be developed when considering disinvestment activities. This presentation refers to one of the chapters of that book on identification activities and disinvestment.
Health technology has no or low added value when it is harmful and/or is deemed to deliver limited health gain relative to its cost, representing inefficient health resource allocation*.

Adam Elshaug
Introduction (I)

• Here, we synthesized state of the art methods for identifying candidate technologies for disinvestment, and propose a framework for executing this task.
The traditional linear concept of health technologies life cycle assumes that once decisions on reimbursement were taken, health technologies remained unassessed up to their disuse by health professionals: under this conception, technologies follow a linear path, involving sequential steps from inception to obsolescence.

The life cycle of a technology is multi-faceted and multi-dimensional, depending on the nature and number of uses.
Methods

We searched systematic reviews on disinvestment and compared the methods used for identifying potential candidates.

A descriptive analysis was performed including sources of evidence used and methods for selection / filtration.
Ten reviews on disinvestment initiatives worldwide were identified. One of them was specifically focused on methodologies for identifying and prioritizing candidate technologies for disinvestment (REDETS, Lain Entralgo, 2012)
The framework consisted in twelve items ("triggers") (Table 1), Application of these triggers through "horizon scanning" techniques facilitated the systematic and transparent identification of existing potentially ineffective technologies and medical practices.
Gallego G et al, 2010. Authors proposed other strategies by which appraisal of existing technologies might be triggered like the comparative effectiveness research, research into clinical practice variations and Program Budget and Marginal Analysis (PBMA).
Results

- Ludwig Boltzman Institute, 2011. Describe that there were consensus on the methods of identification and prioritisation but not methodological guidelines.
Results

- Health Technology Assessment International (HTAi) Policy Forum met in San Francisco, USA, 2012 to explore the use and role of HTA in the reduction of lower value or ineffective uses of Health Technology.
- Members of the Forum proposed different approaches for the identification of technologies for reassessment.
Basic approaches for identification

- “Context-free scientific evidence driven approach” (Approach 1) provided by systematic reviews, evidence-based clinical practice guidelines, effectiveness and safety assessment included in HTA reports.

- “Context-sensitive scientific evidence driven approach” (Approach 2): analysis of the implementation, organizational capacity, economics, legal and ethical issues related to the use of an specific technology in an certain context. PBMA or cost-effectiveness analysis.

- “Colloquial evidence driven approach” (Approach 3): evidence that comes from the expertise, views and realities of stakeholders.

- “Combined-evidence driven approaches” (Approach 4, 5, 6 and 7): four different options, depending on the amount and types of evidence that are combined.
Triggers for identifying candidates (I)

- **Triggers based on context-free scientific evidence**
 - Evidence on Ineffectiveness/Patient Safety concerns/Inefficiency
 - Displacement of an old intervention by a new one
 - Uncertainties related to “Legacy” technologies
 - Uncertainties related to “newer/extended uses” of a technologies

- **Triggers based on context-sensitive scientific evidence**
 - Geographic variations in care
 - Provider variations in care
 - Practice inconsistency with evidence-based standards
 - Temporal variations in volume
 - Leakage
Triggers for identifying candidates (III)

- Triggers based on *colloquial evidence*
 - Negative experiences or perceptions from community members
 - Negative experiences or perceptions from health system workers, administrators and/or funders
Methods for identifying candidate technologies for disinvestment

- **Embedded methodologies**
 - Horizon Scanning of existing technologies
 - Inclusion of triggers for identifying candidate technologies for disinvestment in purchasing and procurement processes
 - Inclusion of triggers for identifying candidate technologies for disinvestment in the guideline development process
 - Inclusion of triggers for identifying candidate technologies for disinvestment in system redesign processes related to resource allocation
 - Routine use of local data

- **Ad Hoc Methods**
 - Horizon or Environmental Scanning
 - Identification of opportunities for disinvestment from evidence-based guidelines and/or HTA reports
 - Identification of potential candidates for disinvestment from systematic reviews (SR)
 - Adaptation of existing list of no-value technologies
 - Comparative Effectiveness Research (CER)
 - Research into clinical variation practices
 - Program Budgeting and Marginal Analysis (PBMA)
 - Nomination and consultation methods
Final remarks
Conclusions

• There was overlapping among the terms used for describing the different approaches.
• Our proposal differentiating basic approaches, triggers for identifying potential technologies and methods that can be used.
• Scientific and/or colloquial evidence should guide the identification of opportunities for disinvestment.
• Context-free scientific evidence allows the identification of ineffective and/or harmful technologies on the basis of valid and reliable methods.
• Needs to be contextualized. Context-sensitive scientific evidence establishes, which technology or practice is relevant in a certain area or institution due to its variability, burden and/or budget impact.
• Stakeholders involvement is crucial, at least for legitimacy and acceptability
Maria Eugenia Esandi¹, Iñaki Gutiérrez-Ibarluzea², Nora Ibargoyen-Roteta² and Brian Godman³

1. Universidad Nacional del Sur eesandi@gmail.com
2. Osteba, Ministry for Health, Basque Government (Primary Presenter)
3. Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, UK and Division of Clinical Pharmacology, Karolinska University Hospital Huddinge, Karolinska Institutet